Qualifying Exam - Partial Differential Equations (II) - May 2019

INSTRUCTION: Any resources or communications are NOT allowed during the exam. You may use all well-known results without proof unless you are asked to prove such a result, but you must indicate the result and include necessary steps. Work on familiar problems first.
\#1. Let $n \geq 2$ and $1<p<n$ be given. Show that the inequality

$$
\int_{\mathbf{R}^{n}} \frac{|u|^{q}}{|x|^{r}} d x \leq C \int_{\mathbf{R}^{n}}|D u|^{p} d x \quad \forall u \in W_{0}^{1, p}\left(\mathbf{R}^{n}\right)
$$

where $C>0$ is a constant, can only hold for certain q and r. Find such q and r, and prove the inequality.
\#2. Let Ω be a bounded open set in \mathbf{R}^{n}. Show that there exist constants $c_{1}, c_{2}>0$ such that

$$
c_{1}\|u\|_{H^{2}(\Omega)} \leq\|\Delta u\|_{L^{2}(\Omega)} \leq c_{2}\|u\|_{H^{2}(\Omega)} \quad \forall u \in H_{0}^{2}(\Omega)
$$

Furthermore, if Ω is a bounded domain with $\partial \Omega \in C^{2}$, show that the same result holds for all $u \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. (Henceforth, a domain is a connected open set.)
$\# 3$. Let $p \geq 1$ and $\Omega \subset \mathbf{R}^{n}$ be an open set. Consider the following statements:
(a) If $u_{k} \rightarrow u$ in $W^{1, p}(\Omega)$, then $u_{k}^{+}=\max \left\{u_{k}, 0\right\} \rightarrow u^{+}=\max \{u, 0\}$ in $W^{1, p}(\Omega)$.
(b) If $u_{k} \rightarrow u$ and $v_{k} \rightarrow v$ in $W^{1, p}(\Omega)$, then $\max \left\{u_{k}, v_{k}\right\} \rightarrow \max \{u, v\}$ and $\min \left\{u_{k}, v_{k}\right\} \rightarrow$ $\min \{u, v\}$ in $W^{1, p}(\Omega)$.
(c) If $g \in W^{1, p}(\Omega), f \in W_{0}^{1, p}(\Omega)$ and $|g(x)| \leq f(x)$ a.e. in Ω, then $g \in W_{0}^{1, p}(\Omega)$.

Show that $(\mathrm{a}) \Longrightarrow(\mathrm{b}) \Longrightarrow(\mathrm{c})$, and then prove (a).
\#4. Let Ω be a bounded domain in \mathbf{R}^{n} with $\partial \Omega \in C^{1}$ and let $f \in L^{2}(\Omega)$ and $g \in L^{2}(\partial \Omega)$. Give a proper definition of a weak solution $u \in H^{1}(\Omega)$ to the Neumann's BVP

$$
(*) \quad\left\{\begin{aligned}
-\Delta u=f & \text { in } \Omega, \\
\frac{\partial u}{\partial \nu}=g & \text { on } \partial \Omega
\end{aligned}\right.
$$

so that, when f, g are smooth, all smooth classical solutions u on $\bar{\Omega}$ are a weak solution. Show that $(*)$ has a weak solution $u \in H^{1}(\Omega)$ if and only if $\int_{\Omega} f d x+\int_{\partial \Omega} g d S=0$. Furthermore, if u_{1}, u_{2} are two weak solutions to $(*)$, prove $u_{1}=u_{2}+C$ for a constant C.
\#5. Let Ω be a bounded open set in $\mathbf{R}^{n}, a_{i j}, b_{i}, c \in L^{\infty}(\Omega)$ and assume

$$
L u=-\sum_{i, j=1}^{n} D_{i}\left(a_{i j}(x) D_{j} u\right)+\sum_{i=1}^{n} b_{i}(x) D_{i} u+c(x) u
$$

is uniformly elliptic on Ω. Show that the $\operatorname{BVP}\left\{\begin{aligned} L u=f & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega\end{aligned}\right.$ has a unique weak solution $u \in H_{0}^{1}(\Omega)$ for each $f \in L^{2}(\Omega)$ if either (a) or (b) given below holds:
(a) $c(x) \geq 0$
a.e. in Ω.
(b) $\quad b_{i} \in W^{1, \infty}(\Omega), c(x) \geq \frac{1}{2} \sum_{i=1}^{n} D_{i} b_{i}(x)$ a.e. in Ω.
\#6. Let $\Omega=\left\{x \in \mathbf{R}^{n}: a<|x|<b\right\}$, where $b>a \geq 0$ and $n \geq 2$, and let $\sigma: \mathbf{R} \rightarrow \mathbf{R}$ be a given continuous function. Assume $U \in H_{0}^{1}(a, b)$ is a weak solution of

$$
-\left(U^{\prime}(r) r^{n-1}\right)^{\prime}=\sigma(U(r)) r^{n-1} \quad \text { in }(a, b)
$$

Define $u(x)=U(|x|)$. Show that u belongs to $H_{0}^{1}(\Omega) \cap C^{0, \frac{1}{2}}(\bar{\Omega})$ and is a weak solution of

$$
-\Delta u=\sigma(u) \quad \text { in } \Omega
$$

