Qualifying Exam – Partial Differential Equations (II) – May 2019

INSTRUCTION: Any resources or communications are NOT allowed during the exam. You may use all well-known results without proof unless you are asked to prove such a result, but you must indicate the result and include necessary steps. Work on familiar problems first.

#1. Let $n \ge 2$ and 1 be given. Show that the inequality

$$\int_{\mathbf{R}^n} \frac{|u|^q}{|x|^r} dx \le C \int_{\mathbf{R}^n} |Du|^p dx \quad \forall \, u \in W_0^{1,p}(\mathbf{R}^n),$$

where C > 0 is a constant, can only hold for certain q and r. Find such q and r, and prove the inequality.

#2. Let Ω be a bounded open set in \mathbb{R}^n . Show that there exist constants $c_1, c_2 > 0$ such that

 $c_1 \|u\|_{H^2(\Omega)} \le \|\Delta u\|_{L^2(\Omega)} \le c_2 \|u\|_{H^2(\Omega)} \quad \forall u \in H^2_0(\Omega).$

Furthermore, if Ω is a bounded domain with $\partial \Omega \in C^2$, show that the same result holds for all $u \in H^2(\Omega) \cap H^1_0(\Omega)$. (Henceforth, a domain is a connected open set.)

#3. Let $p \ge 1$ and $\Omega \subset \mathbf{R}^n$ be an open set. Consider the following statements:

- (a) If $u_k \to u$ in $W^{1,p}(\Omega)$, then $u_k^+ = \max\{u_k, 0\} \to u^+ = \max\{u, 0\}$ in $W^{1,p}(\Omega)$. (b) If $u_k \to u$ and $v_k \to v$ in $W^{1,p}(\Omega)$, then $\max\{u_k, v_k\} \to \max\{u, v\}$ and $\min\{u_k, v_k\} \to$ $\min\{u, v\}$ in $W^{1,p}(\Omega)$.

(c) If $g \in W^{1,p}(\Omega)$, $f \in W^{1,p}_0(\Omega)$ and $|g(x)| \le f(x)$ a.e. in Ω , then $g \in W^{1,p}_0(\Omega)$. Show that (a) \implies (b) \implies (c), and then **prove** (a).

#4. Let Ω be a bounded domain in \mathbf{R}^n with $\partial \Omega \in C^1$ and let $f \in L^2(\Omega)$ and $q \in L^2(\partial \Omega)$. Give a proper definition of a weak solution $u \in H^1(\Omega)$ to the Neumann's BVP

$$(*) \quad \begin{cases} -\Delta u = f & \text{in } \Omega, \\ \frac{\partial u}{\partial \nu} = g & \text{on } \partial \Omega \end{cases}$$

so that, when f, g are smooth, all smooth classical solutions u on Ω are a weak solution. Show that (*) has a weak solution $u \in H^1(\Omega)$ if and only if $\int_{\Omega} f dx + \int_{\partial \Omega} g dS = 0$. Furthermore, if u_1, u_2 are two weak solutions to (*), prove $u_1 = u_2 + \tilde{C}$ for a constant C.

#5. Let Ω be a bounded open set in \mathbf{R}^n , a_{ij} , b_i , $c \in L^{\infty}(\Omega)$ and assume

$$Lu = -\sum_{i,j=1}^{n} D_i(a_{ij}(x)D_ju) + \sum_{i=1}^{n} b_i(x)D_iu + c(x)u$$

is uniformly elliptic on Ω . Show that the BVP $\begin{cases} Lu = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$ has a unique weak solution $u \in H_0^1(\Omega)$ for each $f \in L^2(\Omega)$ if either (a) or (b) given below holds:

(a)
$$c(x) \ge 0$$
 a.e. in Ω . (b) $b_i \in W^{1,\infty}(\Omega), \ c(x) \ge \frac{1}{2} \sum_{i=1}^n D_i b_i(x)$ a.e. in Ω .

#6. Let $\Omega = \{x \in \mathbf{R}^n : a < |x| < b\}$, where $b > a \ge 0$ and $n \ge 2$, and let $\sigma : \mathbf{R} \to \mathbf{R}$ be a given continuous function. Assume $U \in H_0^1(a, b)$ is a weak solution of

$$-(U'(r)r^{n-1})' = \sigma(U(r))r^{n-1}$$
 in (a,b) .

Define u(x) = U(|x|). Show that u belongs to $H_0^1(\Omega) \cap C^{0,\frac{1}{2}}(\overline{\Omega})$ and is a weak solution of $-\Delta u = \sigma(u)$ in Ω .